THERMAL EFFECT OF AN ELECTRICAL
CURRENT ON CONTACTS

K. K. Namitokov, V. B. Krasovitskii, UDC 621.316.923
and S. M. Yurchenko

The temperature field within a contact is calculated analytically, with consideration of real
current distribution within the contact body. The possibility of replacing the volume heat
source by an equivalent surface heat source is demonstrated.

As is well known [1, 2], upon passage of an electrical current through a contact between conductors,
where the effective conductor section decreases to a small conductive zone, there occurs intense heat liber-
ation, accompanied by erosion of the contact surfaces under certain conditions.

The present study is a mathematical analysis of the temperature distribution in the current spread
zone, which permits determination of this value as a function of current strength (density) and the thermo-
physical properties of the electrode material. The calculations are based on the distribution of current
density flowing in a given area of finite radius into the electrode surface zone. This allows mathematical
simulation of a thermal field most closely approximating the real case.

The calculations connected with consideration of the spatial distribution of current within the elec-
trode body can be significantly simplified by taking a qualitatively new approach toward the problem, re~
placing the volume heat source by an equivalent surface source. One possible approach to this problem is
described below, and curves which allow evaluation of the accuracy of the approximation (which proves to
be quite high) are presented in Fig, 1,

1. Cylindrical Heat Source

It is assumed that the discharge is a cylindrical plasma column in contact with a semi-infinite elec-
trode, unbounded in radius, forming a semispace. We will consider the stationary thermal regime de-
scribed by the inhomogeneous Laplace equation,

where Ais the Laplace operator; w is the power liberated by current per unit electrode volume; v is the
thermal conductivity.

The solution of Eq. (1) in the most general case has the form [3]

-1 w(ry =
T = Iy j‘ T2 dr'. (2)

In a cylindrical coordinate system with the z axis coinciding with discharge axis (so that the plane z =0 co-
incides with the electrode surface) we have

J_; ————;'] = [r* 't —2rr' cos o—9¢ )+ (z—2'7 2, 3)
where ¢ is the azimuth angle.
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Fig. 1. Comparative effect on electrode of volume (curve 1) and surface
(curve 2) heat sources. Temperature measured in units T,=1%/a’oyr?,

Fig. 2. Fusion-zone radius versus current for various materials,

We will assume that the heat source is eylindrically symmetrical w(;) =w(r, z) and perform integra-
tion over angle ¢ in Eq. (2). We write the denominator of the integrand in the form
] 7’ ’ -—
]_r:———;'lr—[rz%r"—i—(Z——.z')2]2 1— 2rr c?s(q)-—@) 2
Py (22"

@)

and evaluate the second term in the final bracket. It is easy to see that the inequality

P SN ®)
re-=—r r-—-—r

holds, and, consequently, this quantity cannot exceed unity. Thus the expression in brackets may be rep-
resented in the form of a series,
1
L B T .15 35 :
(1 —kcos®) > =1-—+ 7c058 —'r—sle*cos2 6—7—78— kicos® 0 — ig—k"‘cosﬂ) e R 6)

where 6 =g —¢', k=2rr'/(r? + '),
Substituting Eq. (6) in Eq. (2) and integrating over the angle 6', we find

2o
21 L ! (1 = 0,125 - 0.102%%). )
A —

1
¢ (1 —Fkcosb)’ r—rt—@—2)"

Since k< 1, the second and third terms in Eq. (7) are practically always small in comparison to unity, and
they may be neglected, writing Eq. (2) in the form

’

w(r', 2)d?

T, 2= ——21—-— s r'dr’ ( 3)
Vo et rt - (g—2°
Since we are interested in the temperature distribution in the semispace z>0, we may transform Eq.
(8), changing the limits of integration over z:

r ¢ 1 N g
j w(z)dZ = 5 1 T+ _I_}w(z)dz. 9
~e |t 41 ﬂ N A s R (cR e G A
Expanding the right side of Eq. (9) in a power series
222/ . " . 2
- <], R*=r+2 R =1 +z
Rt R :

and retaining only the first term of the expansion, we find

00

T, z)=i5‘r’dr’J————w(r’ z)dzl .
» -—
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We note that the error connected with the transformation from Eq. (9) to Eq. (10) does not exceed
3/8 in comparison to unity.

Equation (10} will be employed below for analysis of the thermal field in the electrode, created by
volume wy, and surface wg heat sources.

2. Volume Heat Source

We assume that the electrical current I flows into the semispace through a conductive area of radius
a, located on the electrode surface in the plane z =0. The distribution of current force lines within the
electrode was found in [1] and has the form

oo

('I
J=_1 | 100,050 (—32) .
Ja

r

0

;o (11)
J, = S‘ Iy (Aa) J o (Ar) exp (— A2) dR,
na
where J; and J; are Bessel functions.
Correspondingly, the power liberated by the current in a unit volume is equal to
"2
w, = ——, (12)

(9]

where ¢ is the electrical conductivity of the electrode material. Substituting w from Eq. (12) in Eq. (10),
and considering Eq. (11), we obtain the following expression for temperature T(r, z):

I

T 9= —r 5 soayan | 1, aydn | rar f 42 exp [ — (b= w21 [y (') Ty (') - J, (') dy (ur')]
n2aoy B J e 2(13)
! L (R*+R")

We will consider integrals over the variables r' and z', transforming to spherical variables r' =p cosf and
z'=p sin6é. Then

:n:

- 3 de
j\. Lodrh = f——— jexp[—(k 4+ ) psing]
§ (R 4pY?
X [y (hp cos 0) J, (up cos B) -+ J, (Ap cos 6) J, (p.p cos 8)] cos 840. (14)

The value of the integral is determined mainly by the exponential term, with the maximum contribu-
tion produced by the region 6 < 1. In light of this, the Bessel functions may be placed ahead of the integra-
tion sign, using the approximation ¢ ~ 0. Then, using the relationship

n

z
j‘exp [— (A -+ p)psinBlcos8d8 =

0

{l —exp[— (A +ppl} (15)

('7~)

we write Eq. (14) in the form

g0 ) = f 12 (49) Jo (50) + I, (h0) Iy 9] {1 —exp(— (o + Ry pl}y —PL_, (16)

(R +p9*

In order to separate the dimensionless parameter, in Eq. (16) we perform the substitution p =R¢.
Then the integral takes on the form

IJ (LRE) Jo (4RE) + Jy (ARE) J, (uRE)] {1 — exp [— (b + ) REl) — 05 T a7)

148
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We will now show that the integral of Eq. (17) has properties close to those of the delta function [4].
In fact, for AR < 1 and uR < 1, the major contribution is produced by the region £ > 1, and so we may take
I
{l—exp[—(@+NRE) = @+MRE (1+8) * =~E"
and, consequently, we have

a0, p) =R S LT, (ARE) J; (uRE) - J; (LRE) J, 18)
0

In the region of high parameter values uR > 1 and AR > 1 the maximum contribution to the integral
is produced by the region { <1, and therefore

g, W= 5(7~ B)- (19)
Considering Eqs. (18), (19), we write the integral of Eq. (17) in the following form:

1 —exp(—2\R) 1

(20)

After substitution of Eq. (2) in Eq. (13) and integration over the variable u with the aid of the 6 -func-
tion [5] we find

J 1 (7&&)

" T(R) = —exp (— 2AR)1 dA. (21)

ﬂazR vﬁs

Unfortunately, the integral of Eq. (21) cannot be expressed in terms of elementary functions., There-
fore we will consider its limiting cases. In the region R < a, setting R=0in Eq. (21) and expanding the
exponential in a series, we obtain

21% r 2 dA r

= Fa) — = .

TR =er S 109 5= = ey (22)
0

At large distances R > a we obtain [5]

42
T Hie) = ———.
® = j {00) 45 = o 23)
0
In general form the integral of Eq. (21) can be reduced to full elliptic integrals [6],
i
I 4 a [, 4 R a \2 a*

T(R) = = .2 1. 1 K& — —1}E® |}, 24
(R) n“’az(ﬂ’{Sn R+ 3n a (+R2) [ ®.F (R ) ()]} @4

where k=a @?+R%)"1/2. The functions E (k) and K (k) are tabulated in [6] and may be used for numerical
calculations. A curve constructed on the basis of Eq. (24) is presented in Fig. 1.

Equation (24) permits determination of the dependence of the fusion zone radius Rf on current I, In
fact, by setting T =T; in Eq. (24), we obtain Ry as a function of I. Results of numerical calculation for
various metals are presented in Fig. 2.

It should be noted that in [2] the process of contact heating by an electrical current was examined,
with consideration of the dependence of conductor resistivity on temperature, by simultaneous solution of
the thermal-conductivity equation with a volume heat source and the equation for potential u, assuming
that in the contact zone the potential remains constant,

Here we consider an analogous problem for the case where it is possible to neglect the dependence
of conductor resistivity on temperature. But in contrast to [2] the thermal-conductivity equation with
volume heat source is solved with consideration of the current density distribution in the contact, consider-
ing the potential at the boundary to be dependent on the coordinate r

u'z:o =

! j L0 1,00
Y
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Comparison of numerical results shows agreement far from (r > a) and divergence near (r <a) the
contact area, as compared to the results obtained in [2]. This may be explained by the different charac-
ter of the boundary conditions taken in determining the potential u,

3. "Surface" Heat Source

As was noted above, electrode heating is caused to a significant degree by the energy Qt, liberated
in the interelectrode gap. In this case we can assume that the thermal field in the electrode is created
by a "surface™ heat source, located in the plane z=0, In order to defermine the power of this source, we
will use the expression for boundary resistance to the current obtained in [1]:

- 25
3r%oa 25)

Correspondingly, the total power liberated at the electrode boundary is equal to
Q' = R'I?, where R" = R +- R discharge « (26)

Considering that the area of the influx zone is equal to 7a® and the major voltage drop occurs in the narrow
layer near the electrode boundary, we may represent the power density (without discharge I’R) in the form

2
»—2-;—[——- 8(2), r<a,
] 3n*d’c
¢ o - 27)
, r>a,

where 0 (z) is the delta function.

Then to calculate the temperature generated by the "surface" source, we may use the general expres-
sion of Eq. (10). Substituting wg from Eq. (27) in Eq. (10) and considering that integration over the vari-
able z may be performed elementarily, we obtain

a
8 rdr
3naloy j

T(R) = (28)

.
R4
After integration over r' we finally obtain

1
812 . R*NT R
- PR .. S
T®) 3nialoy [( "2 ) a ] 29)

The temperature versus distance curve is presented in Fig. 1, from which one can compare the ef-
fect on the electrode of "surface" and volume heat sources, created by the current of an electric arc.
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